Delayed myelination in a mouse model of fragile X syndrome

Laura K.K. Pacey1, Ingrid C.Y. Xuan1, Sihui Guan1, Dafna Sussman4, R. Mark Henkelman4, Yan Chen2, Christian Thomsen5 and David R. Hampson1,3,∗

1Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 2Faculty of Medicine and 3Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, 4Mouse Imaging Centre (MICE) and the Hospital for Sick Children, Toronto, Canada and 5Department of Neuroinflammation, Lundbeck Research USA, NJ, USA

Received February 27, 2013; Revised May 15, 2013; Accepted May 26, 2013

Fragile X Syndrome is the most common inherited cause of autism. Fragile X mental retardation protein (FMRP), which is absent in fragile X, is an mRNA binding protein that regulates the translation of hundreds of different mRNA transcripts. In the adult brain, FMRP is expressed primarily in the neurons; however, it is also expressed in developing glial cells, where its function is not well understood. Here, we show that fragile X (Fmr1) knockout mice display abnormalities in the myelination of cerebellar axons as early as the first postnatal week, corresponding roughly to the equivalent time in human brain development when symptoms of the syndrome first become apparent (1–3 years of age). At postnatal day (PND) 7, diffusion tensor magnetic resonance imaging showed reduced volume of the Fmr1 cerebellum compared with wild-type mice, concomitant with an 80–85% reduction in the expression of myelin basic protein, fewer myelinated axons and reduced thickness of myelin sheaths, as measured by electron microscopy. Both the expression of the proteoglycan NG2 and the number of PDGFRα+/NG2+ oligodendrocyte precursor cells were reduced in the Fmr1 cerebellum at PND 7. Although myelin proteins were still depressed at PND 15, they regained wild-type levels by PND 30. These findings suggest that impaired maturation or function of oligodendrocyte precursor cells induces delayed myelination in the Fmr1 mouse brain. Our results bolster an emerging recognition that white matter abnormalities in early postnatal brain development represent an underlying neurological deficit in Fragile X syndrome.

INTRODUCTION

Fragile X Syndrome (FXS), the most common single gene cause of autism, results from an expansion of a CGG repeat in the 5′ untranslated region of the X-linked Fmr1 gene. The Fmr1 gene codes for Fragile X Mental Retardation Protein (FMRP), an mRNA binding protein that regulates the translation, stability and transport of hundreds of mRNAs in the brain (1). Dysregulated protein synthesis is thought to result in many of the biochemical and anatomical phenotypes associated with FXS (2–4).

Human imaging and neuropathological studies have revealed alterations in the cerebellum of persons with FXS that include a reduction in the size of the vermis (5,6) and a loss of Purkinje neurons (7). Both abnormalities have also consistently been shown in individuals with idiopathic autism (8–10). In an MRI analysis of the Fmr1 mouse (fragile X knockout mouse, an animal model of the disorder) brain conducted at PND 30, the most prominent change observed was a reduced volume and loss of neurons in the deep cerebellar nuclei, which together with the vestibular nuclei are the sole output of the cerebellar cortex (11). Two separate studies have recently linked mutations in the autism-associated genes TSC1 and TSC2 in Purkinje neurons of the mouse cerebellum to several autism-like phenotypes (12,13). Together, these findings suggest a role for the cerebellum in the pathology of autism spectrum disorders and FXS.

FMRP levels are high in the central nervous system where it is widely and prominently expressed in adult neurons. FMRP is also expressed in immature astrocytes (14,15) and oligodendrocytes (16), and glial expression of dFMRP is required for proper neuroblast development in the drosophila model of FXS (17). Although white matter abnormalities are well established in

∗To whom correspondence should be addressed at: Department of Pharmaceutical Sciences, University of Toronto, 144 College St, Toronto, ON, Canada M5S 3M2. Tel: +1 4169784494; Fax: +1 4169788511; Email: d.hampson@utoronto.ca

© The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
autism spectrum disorders and FXS (6,18–20), the effects of loss of FMRP on cells of the oligodendrocyte lineage and on myelin production have not been well studied.

The objective of this study was to examine oligodendrocyte precursor cells (OPCs), oligodendroglia and myelin in the Fmr1 mouse cerebellum throughout development. We report reduced cerebellar volume accompanied by delayed myelination and reduced OPC number over the first 2 weeks after birth. These early postnatal abnormalities could underlie the delayed maturation of neurons and contribute to neuronal dysfunction in the adult FXS brain.

RESULTS

FMRP expression in the mouse cerebellum

In the mouse forebrain, FMRP expression has been shown to be highest during early postnatal periods and to decrease as the brain matures (21). To characterize the time course of FMRP expression in the mouse cerebellum, we examined FMRP expression in cerebellar homogenates from male wild-type C57BL/6 mice at various time points during the first 2 months of life (Fig. 1A and B). FMRP expression was highest during the first two postnatal weeks and began dropping by PND 21. Expression leveled off at about 4 weeks after birth and remained steady through to adulthood. The level of FMRP in the adult cerebellum was ~50% of the peak level of expression attained between postnatal weeks 1 and 2. The cellular distribution of FMRP in the cerebellum was examined using immunocytochemistry. In the cerebellar cortex, FMRP was expressed in all major neuronal populations—granule cells, Purkinje cells and in interneurons of the molecular layer at all timepoints examined (Fig. 1C). FMRP was also highly expressed in neurons of the deep cerebellar nuclei (data not shown). No FMRP expression was detected in Fmr1 knockout mice (Fig. 1C).

FMRP staining was predominantly found in neurons; however, in the deep cerebellar white matter of PND 7 wild-type mice, 27 ± 3.5% of cells expressing the OPC marker NG2 co labeled with FMRP (Fig. 1D) while 27 ± 2.3% of PDGFRα expressing cells also expressed FMRP (Fig. 1E), suggesting that as many as one-quarter of OPCs may express FMRP in the wild-type cerebellum. The myelin marker myelin basic protein (MBP) was also examined at PND 7. Although anti-MBP labeled predominantly the myelin-rich processes of oligodendrocytes, some oligodendrocyte cell bodies can be identified using MBP immunostaining. In the deep cerebellar white matter of wild-type PND 7 mice, 28 ± 1.5% of MBP positive cell bodies co labeled with FMRP (Fig. 1F), indicating that FMRP expression can also be found in more mature oligodendrocytes in the cerebellum at PND 7. Together, these results confirm the expression of FMRP in cells of the oligodendrocyte lineage in the developing cerebellum.

Diffusion tensor imaging shows reduced volume of the Fmr1 mouse cerebellum

Diffusion tensor imaging tracks the position and direction of water molecules in tissues. It is particularly sensitive to myelin and is often referred to as a white matter imaging technique (22). Image registration revealed that PND 7 Fmr1 mice had a significantly smaller cerebellar volume of 14.78 ± 1.64 mm³ compared with the wild-type cerebellar volume of 18.40 ± 1.66 mm³ (P = 0.0001; Fig. 2A and B). Further analysis of relative brain volume (computed as a fraction of overall brain volume) indicated that the cerebellum in the Fmr1 mice remained small in relative volume (Fig. 2C; false discovery rate = 1%). No statistically significant differences between wild-type and Fmr1 mice were seen in fractional anisotropy or mean diffusion anywhere in the brains.

MBP and 2,3 cyclic nucleotide phosphodiesterase (CNPase) expression display abnormal developmental profiles in the Fmr1 cerebellum

To assess potential changes in oligodendrocytes and the status of myelin, we used an antibody to MBP, a major protein component of myelin (Fig. 3). Four isoforms of MBP, corresponding to 14, 17, 18.5 and 21.5 kDa, can be identified using western blotting. The 17 and 18.5 kDa isoforms were difficult to distinguish separately and were therefore quantified together. Expression of all MBP isoforms was dramatically lower in the Fmr1 cerebellum at PND 7 compared with wild-type mice (Fig. 3A; 14 kDa: 16.1 ± 1.8% of wild-type, P = 0.02; 17/18.5 kDa: 14.0 ± 5.1%, P = 0.005; 21.5 kDa: 21.4 ± 8.4%, P = 0.03). Immunocytochemical analysis of the PND 7 cerebellum confirmed the substantial under-expression of MBP (Fig. 3B). At PND 15, a significant decrease was seen in the 14 and 17/18.5 kDa bands (Fig. 3C; 14 kDa: 44.0 ± 9.7%, P = 0.04; 17/18.5 kDa: 55.5 ± 8.1%, P = 0.04). Expression of the 21.5 kDa band was not different between wild-type and Fmr1 (91.1 ± 14.2%, P = 0.69). At PND 30, there was a non-significant decrease in the expression of all three MBP isoforms (Fig. 3D; 14 kDa: 83 ± 8.7% of wild-type, P = 0.21; 17/18.5 kDa: 90.1 ± 7.3%, P = 0.34; 21.5 kDa: 90.0 ± 8.7%, P = 0.40).

In contrast to the immature cerebellum, in the cerebellum of 2–4-month-old Fmr1 young adults, MBP expression was significantly elevated compared with wild-type (Fig. 3E; 14 kDa: 133.9 ± 8.0% of wild-type, P = 0.02; 17/18.5 kDa: 134.5 ± 9.5%, P = 0.03; 21.5 kDa: 132.4 ± 6.7%, P = 0.01). In older adult mice 7–15 months old, MBP expression was not different from wild-type (14 kDa: 114.8 ± 9.6%; P = 0.35; 17/18.5 kDa: 91.0 ± 5.6%, P = 0.47; 21.5 kDa: 87.7 ± 7.6%, P = 0.18; blots not shown) suggesting that the elevation in early adulthood is transient. These results are indicative of delayed myelination in the Fmr1 cerebellum, followed by transient over-compensation in young adulthood.

To evaluate myelination over development in each genotype, we directly compared the expression of MBP in samples from PND 7, 15, 30, 2–4-month and 7–15-month-old wild-type and Fmr1 mice using quantitative western blotting (Fig. 4). For both genotypes, the expression of the three MBP isoforms was low at PND 7, rose robustly by PND 15 and continued to rise until at least PND 30. In both Fmr1 and wild-type mice expression of the different isoforms peaked at different developmental timepoints; expression of the 21.5 kDa isoform peaked at PND 30 then fell drastically in the adult, whereas the 17/18.5 kDa forms plateaued around PND 30 while the 14 kDa form continued to rise modestly into adulthood. Notably, over the first 30 days of cerebellar development, all three isoforms showed a general rightward shift in relative expression levels.
Reduced myelination in the Fmr1 cerebellum

MBP expression is required for proper myelin formation (23) and loss of MBP results in the absence of compact myelin and the presence of thin myelin sheaths (24). Using electron microscopy, we examined the wild-type and Fmr1 cerebellum at PNDs 7 and 15 to look for structural changes in myelin formation that could result from reduced MBP and CNPase expression (Fig. 6).

At PND 7, cerebellar white matter from Fmr1 mice contained significantly fewer myelinated axons compared with matched sections from wild-type mice (Fig. 6C; wild-type: 7.7 ± 0.2 axons/100 μm²; Fmr1: 5.4 ± 0.8 axons/100 μm², P = 0.04). The average myelin thickness was also significantly reduced in Fmr1 mice compared with wild-type (Fig. 6D; wild-type: 72.5 ± 2.9 nm, Fmr1: 58.2 ± 4.2 nm, P = 0.013). Since the myelin thickness varied widely between individual axons within each mouse, the percentage of axons whose myelin thickness fell within each of five bins was also calculated. This analysis showed a leftward shift in the distribution of myelin thickness in Fmr1 mice, indicating the presence of fewer thick, and more thin sheaths in Fmr1 compared with wild-type mice (Fig. 6E).

The G-ratio (diameter of the axon plus myelin sheath) was also significantly higher in Fmr1 cerebellum compared with wild-type, indicating a thinner myelin sheath in Fmr1 animals (Fig. 6F; wild-type: 0.84 ± 0.007, Fmr1: 0.87 ± 0.001, P = 0.02). At PND 7, axon diameter was not different between wild-type and Fmr1 axons (Fig. 6G; WT: 1.23 ± 0.04 μm, Fmr1: 1.20 ± 0.05 μm, P = 0.43). At PND 15, there was no significant difference in the number of myelinated axons (Fig. 6J), myelin thickness (Fig. 6K), myelin thickness distribution (Fig. 6L), G-ratio (Fig. 6M) or axon diameter (Fig. 6N) between wild-type and Fmr1 mice. Taken together, these data demonstrate significantly reduced myelination in Fmr1 knockout mice at PND 7.

OPCs are altered in young Fmr1 cerebellum

OPCs are characterized by the expression of NG2 chondroitin sulfate and PDGFRα (25,26). To examine possible causes of delayed myelination in Fmr1 cerebellum, the expression of NG2 was examined via western blots. NG2 expression was significantly reduced in the cerebellum of the Fmr1 mice at PND 7 (Fig. 7A; 68.0 ± 8.4%, P < 0.05). In contrast, at PND 15, NG2 expression was elevated in Fmr1 mice (Fig. 7B; 162 ± 28.4%, P = 0.05). NG2 expression declines rapidly with development (27) and was not detectable by western blot in the wild-type or Fmr1 cerebellum after PND 15. The observation that NG2 expression is reduced at PND 7 suggests a change in the number or function of OPCs; this result is consistent with the very large reductions in MBP and CNPase at this time point in Fmr1 mice and could account for the delay in myelination.

To further examine the effect of loss of FMRP on OPCs, we labeled cerebellar sections with antibodies to PDGFRα and NG2 and counted the number of cells that expressed both non-significant decrease in CNPase in the Fmr1 cerebellum (Fig. 5B; 86.6 ± 10.0% of wild-type, P = 0.05). CNPase expression was not tested in older animals. These results are consistent with a reduction in myelin in the Fmr1 cerebellum early in development that appears to normalize as the brain matures.
Developmentally, multipotent ventricular stem cells give rise to committed OPCs, which proliferate to form the pool of cells that eventually become mature oligodendrocytes. We found that the deep cerebellar white matter of Fmr1 mice contained ~40% fewer PDGFRα+/NG2+ cells compared with wild-type mice. Reduced OPC number could contribute to the delayed myelination observed during early postnatal development and could reflect altered OPC survival or a delay in maturation or proliferation.

NG2 is an important regulator of several signaling pathways, including growth factor signaling through PDGFRα (27). The expression of NG2 in the Fmr1 mouse cerebellum was significantly reduced, and similar to the Fmr1 mouse, NG2 knockout mice display delayed myelination which results from delayed OPC proliferation and reduced oligodendrocyte number (26). Although we did not measure proliferation rates in Fmr1 mice, these findings in NG2 knockout mice suggest that diminished OPC proliferation might also be a cause of fewer OPCs in Fmr1 mice. OPC differentiation occurs when the number of OPCs reaches a critical density (30). Therefore, reduced or delayed OPC proliferation could impede OPC differentiation resulting in the delayed myelination observed in Fmr1 mouse cerebellum.

Proper myelination relies on bi-directional signaling between oligodendrocytes and axons (31). Neuronal pathology is well established in FXS but the present study raises the question of whether delayed myelination reflects an axonal or glial deficit. Axon diameter can regulate myelin thickness (32) and whether an axon is myelinated (33). We saw no difference in axon diameter in Fmr1 mice at PND 7 or 15 using electron microscopy. Expression of the axon-specific neurofilament-H was also not different between Fmr1 and wild-type mice at PND 7 (data not shown). These findings suggest the myelination defect is not related to changes in axonal structure. The observation that FMRP is expressed in OPCs and oligodendrocytes in wild-type animals, and the deficiencies in OPC number and NG2 expression discussed earlier also suggest that the pathology in Fmr1 cerebellum is related, at least in part, to changes in the oligodendrocyte lineage cells in the absence of FMRP.

Promising pharmacotherapies for FXS currently being studied in the clinic include Group I metabotropic glutamate receptor (mGluR) antagonists and GABA_B receptor agonists (4,34,35). Interestingly, OPCs have been shown to express both mGluR5 (36) and GABA_B receptors (37) and the GABA_B receptor agonist R-baclofen was shown to increase OPC proliferation.

DISCUSSION

The present study demonstrates for the first time an abnormal pattern of myelination in the Fmr1 mouse brain. We found that the normal progression of myelination is delayed in the early postnatal period in the Fmr1 mouse cerebellum, and that the delay may be explained by a reduction in the number of OPCs in the deep cerebellar white matter at this age. The observed abnormalities in the cerebellum become evident by the first postnatal week, a time corresponding to approximately age 1–3 years in humans and the age at which most children with FXS or autism are first diagnosed (29). Neuroimaging studies have consistently demonstrated alterations in white matter volume and structure in the brains of individuals with both FXS and autism (18–20). Hoeft et al. (6) reported altered white matter volume in several brain regions of 1–3-year-old boys with FXS; this time frame is analogous to the postnatal period where we observed reduced myelination in the Fmr1 mouse.

Reduced OPC number can cause delayed myelination

In the CNS, myelin is produced by oligodendrocytes, which extend compacted spirals of membrane around multiple axons. Developmentally, multipotent ventricular stem cells give rise to oligodendrocyte lineage cells in the absence of FMRP.
proliferation and differentiation in vitro (37). This suggests that, in addition to correcting FXS-related phenotypes such as audiogenic seizures and abnormal dendritic spine morphology (38,39), early treatment with R-baclofen might also be beneficial in treating the delayed myelination observed in Fmr1 mice.

RNA-binding proteins regulate the expression of myelin proteins

Post-transcriptional regulation of myelin protein expression has been shown to be a key regulatory mechanism in ensuring proper myelin formation (40). The RNA-binding protein QKI regulates the expression of several myelin associated proteins, including MBP (41,42). Quaking mice, which have a mutation that reduces QKI expression in oligodendrocytes, have a deficit in compact myelin that results in tremors in their hindquarters during movement (43). These mice also have significantly reduced expression of MBP which results from destabilization and mis-localization of MBP mRNA in the cytoplasm of oligodendrocytes (41).

Given the role of FMRP in regulating protein expression, it is not surprising it is important for proper myelination. We have demonstrated that OPCs and some oligodendrocytes express FMRP in the PND 7 cerebellum. Wang et al. (16) reported that OPCs, but not mature oligodendrocytes, express FMRP and the decline in FMRP levels during maturation was correlated with an increase in MBP expression. This group also demonstrated that FMRP binds to and regulates the translation of MBP mRNA in vitro. Using different experimental strategies, several other groups have also identified the mRNAs for MBP and CNPase (another myelin protein) as substrates for FMRP (1,44). We observed a dramatic decrease in the protein expression of MBP and CNPase in young Fmr1 cerebellum, suggesting...
that, in the absence of FMRP, inappropriate regulation of the expression of these (and potentially other, as yet unidentified proteins) may result in the delayed myelination that we observed in Fmr1 mice.

In addition to being an important component of myelin, CNPase is also an RNA-binding protein that can regulate mRNA translation (45), although its mRNA targets have not yet been established. Therefore, in addition to indicating a reduction in mature myelin, under-expression of CNPase could also have functional consequences in Fmr1 cerebellum owing to its role in regulating protein translation.

Neuronal activity regulates myelination

Neuronal activity is an important regulator of myelination and it is conceivable that altered neuronal activity could influence myelination in FXS. OPCs can undergo depolarization in response to neuronal activation (46). While the role of depolarization in OPCs is currently unclear, both proliferation and differentiation of OPCs can be inhibited in vitro by treatment with glutamate (47). This finding suggests that glutamate signaling may limit myelination through its action on OPCs. Neuronal hyperexcitability is well established in FXS (15,29,38,48,49), although it is unclear how early in development this hyperexcitability is established. It is possible that early neuronal hyperexcitability could affect myelination, thereby contributing to the abnormal neuronal structure and/or function commonly seen later in development. However, the profound deficit that we report here in myelin production in the Fmr1 mouse cerebellum in the first 1–2 postnatal weeks is in contrast to the relatively more subtle effects reported in neurons at these early timepoints. For example, recent studies have revealed somewhat mild changes in dendritic spines (50) and cortical maturation (51) at PND 7 in Fmr1 mice. Therefore, altered myelination might precede and possibly contribute to neuronal abnormalities. Further studies of neurons and oligodendrocytes are needed to determine the interplay between these two cell types in FXS.

The importance of proper myelination during development

The timing of axonal myelination is critical for the normal development of neurons (52). Of note is the observation of delayed myelination in a maternal immune activation model of autism where the offspring from female mice challenged with lipopolysaccharide during pregnancy showed a delay in myelination in the immature brain that was normalized several weeks later, a situation similar to what we report here in Fmr1 mice (53). This group, and others who have used this model, report abnormal behaviors that are thought to reflect autistic-like behaviors in rodents, including altered motor activity, pre-pulse inhibition and anxiety (54,55), suggesting a possible link between abnormal myelin and many of the phenotypes common to autism and FXS.

Few studies to date have addressed the importance of early myelin/white matter deposition for the proper growth and development of the human brain. Steele et al. (56) demonstrated the importance of early white matter development in musicians. Using diffusion tensor imaging to compare white matter organization between musicians who began training before age 7, and those who began after age 7, the authors identified a ‘sensitive period where experience produces long-lasting changes in the brain and behaviour’ such that early musical training has differential impact on (increasing) white matter deposition and ‘sensorimotor synchronization performance.’ This study and others (e.g. 57,58) demonstrate a critical window for myelin deposition that affects the structure and function of the brain well into adulthood. By extension, it is possible that if myelin deposition is reduced during this critical early postnatal period (as documented here in the Fmr1 mouse brain), it could leave lasting structural and behavioral deficits even as myelin levels normalize.

CONCLUSIONS

Our results reveal a delay in myelination accompanied by reduced OPC number and smaller cerebellar volume in Fmr1 mice during early postnatal development. The results reported here, together with emerging evidence from imaging studies conducted on humans with FXS and idiopathic autism, indicate
that white matter abnormalities may represent a common early disturbance in neurodevelopmental disorders. Although deterioration of myelin is a hallmark of multiple sclerosis and other demyelinating disorders affecting adolescents and adults, the consequences of delayed myelination during brain development are less well understood (52,58). Further investigations into the role of FMRP in OPCs, and the dynamic relationship between delayed myelination and FXS-related neuronal abnormalities have the potential to lead to a better understanding of the underlying neuropathology of FXS.

MATERIALS AND METHODS

Animals

All animal experiments were carried out in accordance with the guidelines set out by the Canadian Council on Animal Care and were approved by the University of Toronto Animal Care Committee. Wild-type C57BL/6 and Fmr1 knockout mice (backcrossed > 10 generations on the C57BL/6 background) were generously provided by Dr William Greenough, University of Illinois, and bred at the University of Toronto. All mice were the off-spring
of homozygous pairings. Animals were gender-matched within each experiment and the data presented represents a combination of results from matched male and female mice.

Immunocytochemistry

PND 15, 30 or adult (2–4 months) wild-type and Fmr1 knockout mice were anaesthetized with ketamine/xylazine and intracardially perfused with 0.1M PBS followed by 4% paraformaldehyde. Brains were removed and post-fixed overnight in 4% PFA at 4°C. Brains were subsequently rinsed with PBS and sunk in 30% sucrose/PBS overnight at 4°C. The cerebellum was removed, embedded in OCT and sectioned with a cryostat. Floating coronal cerebellar sections (25 μm) were rinsed in PBS then blocked for 1 h at room temperature in PBS containing 5% goat serum and 0.2% triton X-100. After three 5 min washes, sections were incubated in primary antibody overnight at 4°C. Sections were washed 5 × 10 min in PBS then incubated in secondary antibody for 2 h at room temperature. After 5 × 10 min washes, sections were mounted on glass slides with Prolong Gold Antifade (Invitrogen). For NG2/PDGFRα double labeling, perfused PND 7 brains were placed directly in 30% sucrose (no post-fix) overnight and 14 μm frozen sections were mounted on Superfrost (VWR) slides and treated as described earlier.

For sections treated with the 2F5 anti-FMRP antibody, antigen retrieval was performed as described by Gabel et al. (59). Briefly, floating sections were treated with 0.8% sodium borohydride, washed with PBS then incubated for 45 min at 75°C in 0.01 M Na citrate, pH 6.0. After cooling to room temperature, sections were rinsed with PBS, blocked and treated with primary and secondary antibodies as described earlier.

For sections treated with the 2F5 anti-FMRP antibody, antigen retrieval was performed as described by Gabel et al. (59). Briefly, floating sections were treated with 0.8% sodium borohydride, washed with PBS then incubated for 45 min at 75°C in 0.01 M Na citrate, pH 6.0. After cooling to room temperature, sections were rinsed with PBS, blocked and treated with primary and secondary antibodies as described earlier.

All primary and secondary antibodies were diluted in 0.1 M PBS containing 5% goat serum. Primary antibodies included rat-anti MBP (1:1000, Millipore); rat -anti PDGFRα (1:100, BD Pharmigen); rabbit anti-NG2 (1:250; Millipore); mouse monoclonal anti-FMRP (clone 2F5-1, 1:100, gift of Dr J. Darnell). Secondary antibodies were goat anti-mouse AlexaFluor 488 (1:2000); goat anti-rabbit AlexaFluor 594 (1:1000); anti-rat AlexaFluor 488 (1:500).

Electron microscopy

PND 7 and 15 wild-type and Fmr1 knockout mice were anaesthetized with ketamine/xylazine and intra-cardially perfused with 0.1 M PBS.
followed by 4% paraformaldehyde plus 1% glutaraldehyde (in 0.1 M PBS, pH 7.2). The cerebellum was dissected and post-fixed in paraformaldehyde plus glutaraldehyde at room temperature for 2 h after which the fixative was removed and replaced with fresh fixative and the samples were stored at 4°C. After washing, the samples were post-fixed with 1% osmium tetroxide in PBS for 2 h at room temperature in the dark. The samples were washed with PBS followed by dehydration using a graded series of ethanol/distilled water: 50, 70, 90 and 100% in 45 min, 45 min, 1 h and 2 h, respectively at room temperature. The samples were then washed with propylene oxide and infiltrated with Spurr resin using a graded series of Spurrs and Propylene oxide mixture: (i) one part Spurrs resin mixed with two parts 100% PO for 2 h using an agitator; (ii) two parts Spurrs resin mixed with one part 100% PO for 3 h using an agitator; (iii) 100% Spurrs overnight using an agitator; (iv) second change with 100% Spurrs resin after the overnight for 2 h. Samples were placed in the mold and polymerized at 60°C for 48 h. After complete polymerization, the sample was sectioned on a Reichert Ultracut E microtome to 90 nm thickness and collected on 200 mesh copper grids. The sections were stained using saturated uranyl acetate for 15 min, rinsed in distilled water, followed by Reynold’s lead citrate. The sections were examined with a Hitachi H7000 transmission electron microscope at an accelerating voltage of 75 kV. Images were analyzed using Image J software. For each animal, the number of myelinated neurons were ing voltage of 75 kV. Images were analyzed using Image J software package (FMRIB, Oxford, UK), which was used to create Fractional Anisotropy maps for each of the 20 brains imaged.

Western blotting

Quantitative western blotting was performed as previously described (62). The cerebellum was isolated and homogenized in ice cold 50 mM Tris–HCl, 1% SDS, pH 7.4, supplemented with protease inhibitor cocktail (Roche) using a glass/telfon homogenizer. Protein concentrations were determined using the BCA assay (Sigma). Equal amounts of protein (6–30 μg depending on the abundance of the target protein) were loaded onto a 6, 10 or 12% polyacrylamide–SDS gel and transferred onto a nitrocellulose membrane after electrophoresis. The membranes were blocked in 5% milk for 1 h and incubated at 4°C overnight with one of the following primary antibodies: rat anti-MBP (1:1000; Millipore), rabbit anti-NG2 (1:250; Millipore) or mouse anti-CNPase (1: 500, Millipore) and mouse anti-GAPDH antibody (1:4000–1:100 000; Sigma). After washing, a goat anti-mouse, goat anti-rabbit or goat anti-rat (Jackson Labs) HRP-conjugated secondary antibody was applied for 2 h. The immunoreactive proteins were visualized using the FluorChem™ Multimode Light Cabinet (Alpha Innotech). Densitometric analysis was carried out using the AlphaEase FC software (Alpha Innotech). The intensity of the band of interest was normalized relative to the GAPDH band intensity. Protein expression in WT and Fmr1 knockout animals is presented as a percentage of wild-type expression levels.

ACKNOWLEDGEMENTS

The authors thank Dr D.M. Broussard for helpful advice and comments on the manuscript.

Conflict of Interest statement. None declared.

FUNDING

This work was supported by the Canadian Institutes for Health Research and Lundbeck Research USA.

REFERENCES

