Foxh1 Is Essential for Development of the Anterior Heart Field

Ingo von Both,1 Cristoforo Silvestri,2,7 Tuba Erdemir,1,7 Heiko Lickert,1 Johnathon R. Walls,3 R. Mark Henkelman,3 Janet Rossant,1,4 Richard P. Harvey,6 Liliana Attisano,5 and Jeffrey L. Wrana1,4,*

1Samuel Lunenfeld Research Institute Mount Sinai Hospital 600 University Avenue Toronto, Ontario M5G 1X5 Canada
2Institute of Medical Science University of Toronto 3Department of Medical Biophysics 4Department of Medical Genetics and Microbiology 5Department of Biochemistry Medical Sciences Building 1 King’s College Circle University of Toronto Toronto, Ontario M5S 1A8 Canada 6Victor Chang Cardiac Research Institute Faculties of Life Science and Medicine University of New South Wales 384 Victoria Street Kensington 2051, New South Wales Australia

Summary

The anterior heart field (AHF) mediates formation of the outflow tract (OFT) and right ventricle (RV) during looping morphogenesis of the heart. Foxh1 is a forkhead DNA binding transcription factor in the TGFβ-Smad pathway. Here we demonstrate that Foxh1−/− mutant mouse embryos form a primitive heart tube, but fail to form OFT and RV and display loss of outer curvature markers of the future working myocardium, similar to the phenotype of Mef2c−/− mutant hearts. Further, we show that Mef2c is a direct target of Foxh1, which physically and functionally interacts with Nkx2-5 to mediate strong Smad-dependent activation of a TGFβ response element in the Mef2c gene. This element directs transgene expression to the presumptive AHF, as well as the RV and OFT, a pattern that closely parallels endogenous Mef2c expression in the heart. Thus, Foxh1 and Nkx2-5 functionally interact and are essential for development of the AHF and its derivatives, the RV and OFT, in response to TGFβ-like signals.

Introduction

The heart arises shortly after gastrulation, and problems in heart morphogenesis lead to congenital heart disease, which is the most common form of birth defect in humans (Harvey, 2002a; Olson and Schneider, 2003). Initiation of heart development occurs in the cardiac crescent, or primary heart field, when cells adopt a cardiac fate in response to extracellular cues such as Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), and Wingless related factors (WNTs). Cells from this primary heart field then contribute to the developing linear heart tube, which in mammals is composed largely of prospective left ventricle (LV) (Cai et al., 2003). At the looping stage, there is a large expansion at the arterial pole of the developing heart in the RV and OFT region that occurs concomitantly with rightward looping of the linear heart tube (Kelly and Buckingham, 2002). At this early stage, regional specification of the heart chambers is already evident. For example, Hand2 (formerly dHand) and Mef2c, which encode bHLH and MADS box transcription factors, respectively, display restricted expression to the RV and OFT, and deletion of these genes leads to defects in RV and OFT morphogenesis (Lin et al., 1997; Srivastava et al., 1997).

Early analysis of heart development in the mouse and fate mapping studies in the chick suggest that the OFT does not arise from the primary heart field but is added later from a distinct population of cells (Kelly et al., 2001; Kelly and Buckingham, 2002; Mjaatvedt et al., 2001; Waldo et al., 2001). This secondary, or anterior, heart-forming field (AHF) arises from a group of splanchnic mesodermal cells that lie medial to the primary heart field cells and extend anterior and dorsal to the early linear heart tube. Furthermore, in the mouse, fate mapping together with analysis of the Fgf10 gene suggests that the arterial pole of the heart undergoes rapid expansion, a group of Fgf10-expressing cells in the pharyngeal mesoderm contribute to splanchnic mesoderm and thence to the growing heart tube (Kelly et al., 2001). The AHF is thus thought to be a critical precursor population for formation of the RV and OFT.

Little is known of the signals that regulate formation of the AHF. However, BMPs are expressed in the AHF (Waldo et al., 2001) and likely function to induce expression of the pancardiac homeobox gene Nkx2-5, which is essential for myocardial differentiation in vitro and cardiac morphogenesis and chamber differentiation in vivo (Cripps and Olson, 2002; Harvey, 2002b; Olson and Schneider, 2003). Expression of Fgfb and Fgf10 also marks the AHF and may regulate cardiomyocyte differentiation or the migratory behavior of precursor cells destined to move into the arterial pole (Kelly and Buckingham, 2002). The medial splanchnic mesoderm that contributes to the AHF also expresses the LIM homodomain protein Isl1, and in mouse embryos lacking lsl1, expression of local BMP and FGF genes is downregulated (Cai et al., 2003). Although Isl1-positive cells may contribute cardiomyocytes to both the anterior and posterior poles of the heart, the most pronounced defects in the mutants are in anterior regions (Cai et al., 2003). This suggests that Isl1 is important for expression of morphogens that control cardiac development and the specification of splanchnic mesoderm that gives rise...
Figure 1. Defects in Heart Morphology in Foxh1 \(-/-\) Mutant Embryos

(A) Scanning electron microscopy analysis of stage matched wild-type \((+/+)\) and Foxh1 null mutant \((-/-)\) embryos at embryonic days E8.5 and E9.0. Frontal views of each embryo are shown with the pericardium removed. Most Foxh1 \(-/-\) mutant embryo hearts (iii, iv) arrest by LS-II with disorganized primitive ventricles. Scale bar 200 \(\mu\)m.

(B) Summary of heart morphology defects classified into three types based on their location.

<table>
<thead>
<tr>
<th>Type</th>
<th>Defect Description</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>Anterior truncation (\leq) LS-0</td>
<td>45.7%</td>
</tr>
<tr>
<td>IB</td>
<td>Ballooned pericardium LS-I/II</td>
<td>46.4%</td>
</tr>
<tr>
<td>IA</td>
<td>Ballooned pericardium LS-III</td>
<td>7.9%</td>
</tr>
</tbody>
</table>
to the AHF. Of note, the forkhead DNA binding protein Foxh1, previously named FAST2 (Labbe et al., 1998), is strongly expressed in the heart-forming regions during the looping stage (Weisberg et al., 1998). Since Foxh1 is a nuclear target of the Transforming Growth Factor β (TGFβ)-Smad signaling pathway (Attisano et al., 2001), this suggests that TGFβ-like signals may also function to regulate heart morphogenesis.

TGFβ signals through heteromeric complexes of transmembrane Ser/Thr kinase receptors that phosphorylate receptor-regulated (R)-Smad2 and R-Smad3. This induces assembly of a R-Smad-Smad4 complex and nuclear accumulation of the heteromeric Smad complex. In the nucleus, R-Smad2 and R-Smad3 interact with DNA binding proteins, such as Foxh1, while Smad4 stabilizes DNA binding by the ternary complex and recruits coactivators. Since Foxh1 only binds R-Smad2 and R-Smad3, it functions specifically to transduce TGFβ-like signals into transcriptional responses (Labbe et al., 1998). Genetic analyses in zebrafish and mouse have shown a key role for Foxh1 in mediating anterior-posterior patterning by nodal-like signals during gastrulation (Whitman, 2001). In zebrafish, Foxh1 is the product of the schmalspur gene and mutations in the region of this gene encoding the forkhead DNA binding domain lead to loss of the gastrula organizer and subsequent loss of axial midline structures (Whitman, 2001). In the mouse, deletion of Foxh1 leads to constrictions at the embryonic-extraembryonic boundary with lack of anterior specification, primitive streak elongation, and subsequent failure of gastrulation (Type II and III mutants) (Hoodless et al., 2001; Yamamoto et al., 2001). This occurs with variable penetrance, and in less severe Type I mutants, defects in specification of the anterior primitive streak that are analogous to the zebrafish schmalspur mutants are observed, with subsequent loss of midline structures (Hoodless et al., 2001; Yamamoto et al., 2001).

The molecular mechanisms that control formation of the AHF in the mouse are unknown. Here we demonstrate that Foxh1 is required for formation of the AHF. Accordingly, Foxh1−/− mutant embryos exhibit loss of Fgf8- and Fgf10-positive AHF cells and severe defects in RV and OFT formation that closely resemble the defects seen in Mef2c−/− mutant hearts. Indeed, we demonstrate that Mef2c expression in the anterior region of the heart is dependent on Foxh1 and identify a composite Foxh1-Nkx2-5 binding site within the Mef2c gene that is regulated by TGFβ signaling in a Smad-dependent manner.

Furthermore, analysis of a lacZ-transgene driven by an intronic enhancer fragment of Mef2c harboring this element shows Foxh1-dependent expression in the presumptive AHF and its derivatives, the RV and OFT, where endogenous Mef2c is expressed. These results thus demonstrate that a TGFβ-like Smad signaling pathway specifies the AHF through a Foxh1-Nkx2-5 complex that regulates Mef2c expression.

Results

Heart Defects in Foxh1 Null Embryos

Foxh1 is expressed throughout the gastrulating embryo, including the region corresponding to the AHF, and at later stages of development it becomes increasingly restricted to the heart (Supplemental Figure S1). Its expression is strongly expressed in the heart-forming regions during the looping stage (Weisberg et al., 1998). In the course of analyzing Foxh1−/− mutant embryos (Hoodless et al., 2001), we observed pericardial edema (data not shown), suggesting a defect in heart morphogenesis. Therefore, we investigated the gross morphology of Foxh1−/− mutant hearts by scanning electron microscopy. The inflow region of the mutant hearts, including the developing left and right atrial appendages, appeared similar to that of wild-type embryos (Figure 1A). However, the ventricle and OAT of the Foxh1−/− mutant hearts were disorganized, particularly at later developmental stages around E9.0. Analysis of looping stage (LS) development in Type I Foxh1−/− mutants (Hoodless et al., 2001) showed that hearts in 46% of mutants developed to LS-II/III, 8% developed to LS-III with looping always occurring to the right, and the remaining 46% arrested at LS-0 (Figure 1B).

Next, we analyzed expression of the gene encoding cardiac myosin binding protein C (MybpC3), which is a general cardiomyocyte marker (Bruneau et al., 2001). Comparison to wild-type embryos revealed that overall expression in mutant embryos was not grossly abnormal, indicating no major defect in cardiomyocyte differentiation (Figure 1C). However, serial sections revealed a disorganized myocardium, poor trabeculation in the ventricular region, and a very poorly formed OAT (Figure 1C, vi–viii). Further, posterior development appeared normal, as clearly defined right and left atria were evident in the mutants (Figure 1C, vii). Analysis of expression of the pan-cardiomyocyte marker, α cardiac actin (Actc1), showed similar results (data not shown). To further explore the morphology of the mutant hearts, we employed optical projection tomography (OFT), which allows for three-dimensional imaging of fluorescently stained embryos (Sharpe et al., 2002). In striking contrast to wild-type embryos, Foxh1 mutants costained for MybpC3 and Actc1 to highlight all of the cardiomyocytes displayed a poorly formed OAT that ended in a blind sac (Supplemental Movie S1). Next, we analyzed myosin light chain 2v (Myl2), an early marker of the ventricular region (Christoffels et al., 2000). Myl2 showed robust expression in the future ventricular region of the abnormal mutant hearts (Figure 1D), indicating that they had attained ventricular identity. However, as also highlighted

(B) Schematic (top) of early stages of cardiac looping morphogenesis in mouse embryos and summary (bottom) of the gross morphology and observed LS of hearts in Type I Foxh1−/− mutants (percent of 140 Type I Foxh1−/− mutants analyzed) (Hoodless et al., 2001; Yamamoto et al., 2001).

(C, D) Whole-mount in situ staining for the pan-cardiomyocyte marker, Mybpc3 (C) or the panventricle marker, Myl2 (D) in E8.5–E8.75 wild-type (+/+), +/−, and Foxh1−/− mutant (−/−, −/−, −/−, −/−) embryos. Corresponding sections from each embryo are shown progressively from posterior (ii and vi) to anterior (iv and viii), as indicated in the whole-mount panel (i and vi). The black arrowhead marks the left/right ventricular boundary in the sections of the wild-type embryos (ii) and the white/black arrowhead the putative left ventricular segment in the mutant embryos (v). Abbreviations: LS, looping stage; SV, sinus venosus; A, atria; RA, right atrium; LA, left atrium; AVC, atrioventricular canal; LV, left ventricle; RV, right ventricle; V, ventricle; OAT, outflow tract; r, right; I, left; a, anterior, p, posterior; d, dorsal; v, ventral.
by Mybpc3 expression, the ventricles of the mutants were disorganized and there was an absence of well-formed aortic arch arteries in the region of the aortic sac (Figures 1C and 1D, viii). We also examined Hey2, which is also expressed in the ventricle region, and observed expression throughout the heart tube (data not shown). Type IC mutants, which arrest at LS-0 and display severe anterior truncations, revealed similar expression of these markers (data not shown). Thus, Foxh1^{−/−} mutants have a common ventricle and form a rudimentary heart tube.

RV and OFT Defects in Foxh1^{−/−} Mutants

To understand the molecular basis for the Foxh1^{−/−} mutant heart phenotype, we examined markers of chamber specification. GATA binding protein 4 and 6 (Gata4, Gata6), which are expressed in endoderm and cardiomyocytes in the posterior aspect of the heart (Parmacek and Leiden, 1999), were strongly expressed in the mutants (Figure 2A), as was Myh6 (cardiac myosin heavy chain α), which is normally expressed in the inflow tract and atria at this stage (Figure 2A). Next, we examined the predominantly LV marker Hand1 (formerly eHand) (Brand, 2003; Olson and Schneider, 2003), which displayed robust expression in the prospective LV of the mutants (Figure 2B). In striking contrast, expression of Smpx (Chisel) and Nppa (Atrial Natriuretic Factor), which are normally expressed in the outer curvature of the left and right ventricles, as well as the forming atrial appendages (Christoffels et al., 2000), were completely absent in the ventricular region of mutant hearts, although still present in the future atrial region (Figure 2C). Nppa expression is regulated by Tbx5 (Bruneau et al., 2001). Therefore, we examined Tbx5 expression, which was found to be normal in the inflow tract of Foxh1^{−/−} mutant hearts, but was undetectable in the LV (Figure 2C). Finally, we examined expression of Hand2, which after looping becomes restricted to the RV-OFT (Thomas et al., 1998) and regulates Nppa directly (Thattaiyahath et al., 2002), as well as Wnt11, which marks the OFT (Cai et al., 2003). Neither Hand2 nor Wnt11 was expressed at significant levels in stage-matched mutants (Figure 2D). Together, these data indicate that while posterior markers of heart patterning are not severely affected by loss of Fox1, markers of the RV-OFT are absent and there are defects in patterning the outer curvature of the LV. Of note, the RV-OFT defects coupled with the loss of Nppa and Hand2 expression are highly reminiscent of the null phenotype of Mef2c (Lin et al., 1997).

Mutation of Foxh1 causes defects in specifying the anterior primitive streak during gastrulation, which leads to defects in anterior mesendoderm formation (Hoodless et al., 2001). Similar defects also occur in embryonic mutants of the forkhead protein, Foxa2 (Dufort et al., 1998), and indeed Foxa2 expression in the anterior primitive streak is dependent on Foxh1 (Hoodless et al., 2001). Therefore, to explore whether the patterning defects in Foxh1 mutant hearts might be caused by a failure in mesendoderm structures, we examined patterning in Foxa2 embryonic mutant hearts. Although the anterior morphology of Foxa2 embryonic mutant embryos was disturbed, expression of Smpx, Nppa, and Wnt11 was detected in the heart at intensities comparable to wild-type embryos (Supplemental Figure S2A–S2C), contrasting Foxh1 mutants (Figures 2C and 2D). Moreover, in chimeric embryos comprised of high contributions of Foxh1 mutant ES cells in a wild-type background, hearts displayed a rudimentary phenotype, despite the strong contribution of wild-type cells to the endoderm (Hoodless et al., 2001). Finally, we examined ES cells that were induced to form beating foci of cardiomyocytes after differentiation into embryoid bodies (EBs) (Supplemental Figure S2D) (Boheler et al., 2002). As shown in Supplemental Figure S2E, ES comprised of Foxh1^{−/−} ES cells (FK03) were completely defective in their ability to form beating foci, and re-expression of a Foxh1 transgene restored this capability in a dose-dependent manner. In contrast, Foxa2^{−/−} ES lines formed beating foci at a frequency comparable to wild-type ES cells. Altogether, these data indicate that the patterning defects observed in Foxh1 mutant hearts are not secondary to loss of anterior mesendoderm structures, particularly defects in definitive endoderm.

Defective Anterior Heart Field in Foxh1^{−/−} Mutants

The AHF is a key contributor of cardiogenic precursor cells to the RV-OFT of mammalian hearts (Kelly and Buckingham, 2002). Fgf8 and Fgf10 gene transcripts mark the AHF and are also expressed in the pharyngeal mesoderm that is contiguous with this structure in anterior regions (Kelly et al., 2001). Therefore, to explore whether the Foxh1^{−/−} mutant phenotype reflects defects in the AHF, we examined Fgf8 and Fgf10 expression in Foxh1^{−/−} mutant embryos. At E8.0, Fgf8 and Fgf10 expression appears to mark a distinct population of splanchnic mesodermal cells that lies medial to the primary heart field and which progressively comes to occupy a position dorsal and anterior to the primary heart field, from where it converges at the midline and enters the arterial pole of the developing heart. In mutants at this stage, posterior expression of both Fgf8 and Fgf10 was normal; however, there was a marked reduction in expression in the anterior region (Figure 3A), which was most evident at E8.25 when anterior expression of Fgf8 was absent in the mutants, despite normal posterior expression. Furthermore, at later stages Foxh1^{−/−} mutants showed little detectable expression of Fgf8 and Fgf10 in the heart field, whereas expression of these markers in the surrounding pharyngeal mesoderm was readily detectable (Figure 3A). Next we examined Isl1, which is required for development of the medial splanchnic mesoderm from which FGF-expressing AHF cells arise. Consistent with an early role in specifying the secondary heart field, Isl1-expressing cells have been found to contribute to both posterior and anterior segments of the developing heart, and in Isl1 mutants BMP expression is downregulated in addition to FGFs. In Foxh1 mutants, Isl1 expression was similar to wild-type embryos at both E8.0 and E8.5 (Figure 3B) and BMP2 and BMP7 expression was unaffected (data not shown). Together, these results suggest that Foxh1 is not required for development of the Isl1-positive medial splanchnic mesoderm per se, but is required for formation of the AHF, which arises from this population of cells.

Mef2c Expression Is Dependent on Foxh1

Chamber specification in the vertebrate heart is controlled by a hierarchical transcription factor network that
Embryos between E8.5 and E9.0 were hybridized with the indicated digoxigenin-labeled riboprobes. Only the heart region, with pericardium removed, is shown for each stage-matched embryo. The anterior and posterior boundaries of the prospective left ventricle in the Foxh1^{−/−} mutant hearts are marked (arrowheads).

(A) The inflow tract markers Gata4, Gata6, and Myh6 are expressed in Foxh1^{−/−} mutant hearts.

(B) Hand1, which marks the prospective LV region is expressed in the ventricular region of Foxh1^{−/−} mutant hearts.

(C) Smox and Nppa, which mark the outer curvature of the developing ventricles and Tbx5 in the LV, are severely downregulated in Foxh1^{−/−} mutant hearts. Note that Nppa, Smox, and Tbx5 expression domains in the inflow tract are undisturbed in the Foxh1^{−/−} mutants.

(D) Hand2 and Wnt11, which mark the OFT-RV and OFT, respectively, are not expressed in Foxh1^{−/−} mutant hearts at E9.0.
Foxh1 Is Required for Formation of the AHF

Mef2c expression in the ventricles and OFT was absent, although inflow tract expression of Mef2c was still evident (Figure 3C). To confirm this, we performed quantitative real-time RT-PCR on RNA extracted from E8.5 embryos using primers for the cardiac-specific transcript of Mef2c. In RNA isolated from Foxh1−/− embryos, Mef2c expression was decreased to 50% of wild-type, whereas in Foxh1−/− mutants the levels were less than 20% of the controls (Figure 3D). We also examined Mef2b expression, which was upregulated in Mef2c−/− mutants (Lin et al., 1997), and found that it was increased by 2.5-fold in Foxh1−/− mutants (Figure 3D). These data show that Foxh1 is critical for development of the AHF and formation of the RV-OFT in part by regulating expression of Mef2c, a key component of the cardiac transcription factor gene network.

Foxh1 Interacts with Nkx2-5 to Regulate a TGFβ Responsive Element in the Mef2c Gene

To determine whether Foxh1 might directly regulate Mef2c, we searched for Foxh1 binding sites in the Mef2c gene and found five candidates, two of which are found close to each other within F13A (Figure 4A). We cloned each of these regions into a heterologous luciferase reporter plasmid carrying the E1b basal promoter and tested them for TGFβ- and Foxh1-responsive expression using HepG2 cells, which do not express Foxh1 (Labbe et al., 1998). Of the four tested elements, only F13A was found to be TGFβ-responsive in a Foxh1-dependent manner (Figure 4B), although the overall activity was low. Mef2c expression is also dependent on Nkx2-5 (Cripps and Olson, 2002), so we also tested these elements in the presence of Nkx2-5 expression. Nkx2-5 induced F13A activity but did not allow for TGFβ-responsive expression on its own. However, when Nkx2-5 was coexpressed with Foxh1, the two synergistically activated F13A and increased TGFβ-responsive activation of the element to 80-fold over the control. Of note, F19 also showed Nkx2-5 responsiveness but it neither synergized with Foxh1 nor displayed TGFβ-dependent regulation, whereas the other two elements displayed no response to any treatment (Figure 4B). The F13A construct was therefore chosen for further examination.

Foxh1 interacts with R-Smad2-Smad4 complexes that are in the TGFβ pathway, to form a Foxh1-Smad complex on DNA (Labbe et al., 1998). Therefore, we overexpressed R-Smad2 and Smad4 in HepG2 cells and evaluated F13A activation. R-Smad2 and Smad4 had minimal effects when expressed with Foxh1 alone, but when Nkx2-5 was coexpressed, the Smads significantly increased activation of the enhancer (Figure 4C). Furthermore, expression of a Foxh1 mutant (Foxh1-SIMm), which is defective in Smad binding (Germain et al., 2000), abolished all TGFβ responsiveness, as did a Foxh1 mutant (Foxh1-FKHDm) that is defective in its forkhead DNA binding domain (Figure 4C). We also observed that F13A was unresponsive to BMP2 stimulation (Figure 4C), consistent with the specific function of Foxh1 in TGFβ-like signaling pathways (Labbe et al., 1998). Therefore, TGFβ-dependent activation of F13A is dependent on both the Smad binding and forkhead DNA binding activity of Foxh1.

The F13A element contains two potential Foxh1 binding sites (Figure 4D). Mutation of the upstream site (F13A-F1m) had no effect on F13A activation, whereas mutation of the downstream site (F13A-F2m) abolished all TGFβ responsiveness (Figure 4E). We noted that this Foxh1 site is situated two base pairs upstream of an Nkx2-5 consensus binding site and has adjacent Smad binding elements (Figure 4D), suggesting that Foxh1 and Nkx2-5 synergize through this element. To test this, we generated a 132 bp element that incorporated the Foxh1, Nkx2-5, and Smad binding elements (FNE, for Foxh1 and Nkx2-5 element; Figure 4D). Analysis of the wild-type FNE revealed that it responded to TGFβ in a Foxh1- and Nkx2-5-dependent manner (Figure 4F), whereas mutation of the Foxh1 and Nkx2-5 sites (FNE and FNMε, respectively; Figure 4D) abolished responsiveness (Figure 4F). Thus, activation of the TGFβ-responsive FNE within intron 3 of Mef2c is dependent upon adjacent Foxh1 and Nkx2-5 binding sites.

To characterize binding of Foxh1 and Nkx2-5 to the FNE, we employed a DNA immunoprecipitation approach using COS1 cells expressing Nkx2-5 or Foxh1 (see Experimental Procedures). In either Foxh1 or Nkx2-5 immunoprecipitates, we readily detected the bound FNE (Figure 5A), and mutation of the Foxh1 forkhead domain abolished Foxh1 binding (data not shown). We also confirmed by electrophoretic mobility shift assays that Foxh1 and Nkx2-5 bound to FNE (data not shown). To demonstrate that Foxh1 occupies the endogenous Mef2c FNE during cardiomyocyte differentiation, we employed

Figure 3. Foxh1 Is Required for the Anterior Heart Field and Mef2c Expression

(A) Defects in the anterior heart field of Foxh1−/− mutants. Wild-type (+/+) and Foxh1 null mutant (−/−) embryos at E8.0 and E8.25-E8.5 (indicated) were analyzed by whole-mount in situ for Fgf10 (left panels) and Fgf8 (right panels) expression. At the earlier stage, both Fgf10 and Fgf8 are expressed in Foxh1−/− mutants in the splanchnic mesoderm that lies medial to the cardiac crescent, whereas at later stages anterior expression is decreased relative to controls. This is most prominent in mutant hearts at the linear heart tube stage (E8.25). At the early looping stage, expression in the OFT-RV of mutant hearts is absent, whereas expression in the surrounding mesoderm is evident.

(B) Analysis of Isl1 expression. Ventral views of E8.0 (left) and E8.5 (middle) wild-type (+/+) and Foxh1 null mutant (−/−) embryos analyzed for Isl1 expression with a right lateral view of the E8.5 embryo also shown (right). Note that Isl1 expression in the mutants is comparable to wild-type patterns.

(C) Analysis of Nkx2-5 and Mef2c expression. Left lateral (Nkx2-5) and right lateral (Mef2c) views of wild-type (+/+) and Foxh1 null mutant (−/−) embryos analyzed for Nkx2-5 and Mef2c expression by whole-mount in situ. Note that while Nkx2-5 is expressed throughout mutant hearts, Mef2c expression is absent in the poorly formed OFT and RV, but not in the posterior domain. Arrowheads mark anterior and posterior boundaries of the LV in mutant embryos.

(D) Analysis of Me2f2 family member expression. RNA purified from E8.5 wild-type, Foxh1−/−, and Foxh1−/− embryos (+/+, +/−, −/−, respectively) was analyzed by real-time PCR using primers specific for Me2f2 or the cardiac transcript of Mef2c. Results are plotted relative to the wild-type control (mean ± SD) for each gene.
Figure 4. Nkx2-5 and Foxh1 Synergize to Regulate TGFβ Responsiveness of an Intron Enhancer in the Mef2c Gene

(A) Schematic representation of the Mef2c gene. Numbered boxes depict exons of untranslated and translated regions in white and black, respectively (Wang et al., 2001). Open right angle arrows indicate tissue-specific transcription start sites, and closed arrows show the relative positions of Foxh1 sites in the introns (Fi3A, Fi3B, Fi7, Fi9).

(B, C, E, and F) Luciferase reporter assays. HepG2 cells were transiently transfected with the indicated Mef2c-Luc reporter constructs with (+) and without (−) Foxh1, Nkx2-5, Smad2, or Smad4 expression constructs. Luciferase activity in lysates from cells incubated overnight in the absence (white bars) or presence of 100 pM TGFβ (black bars) or 1 nM BMP2 (hatched bars) was determined and normalized to β-galactosidase activity. Data are presented as fold activation over basal promoter activity (relative activity), and are expressed as mean ± SD of triplicates from a representative experiment. (C) Activity of Mef2c-Fi3A-Luc. Mef2c-Fi3A-Luc activity was assayed in the presence of wild-type Foxh1 (+), the Foxh1 SIMm mutant (A), the Foxh1 FKHdm mutant (R), and the indicated combinations of Nkx2-5, Smad2, and Smad4.

(D) Schematic representation of the 906 bp Fi3A element and its derivatives. Smad (SBE, green), Foxh1 (F1 or F2, red), and Nkx2-5 (N, blue) sites and their corresponding mutants (F1m, F2m, and Nm) are indicated. Numbering is according to GenBank #NT_039589.

(E) Activity of Fi3A and derivatives containing mutations in either the first (Fi3A-F1m) or second (Fi3A-F2m) Foxh1 sites. (F) Characterization of FNE. A minimal TGFβ-responsive element (FNE, for Foxh1 and Nkx2-5 element) was identified in Fi3A and Foxh1 (FmNE) and Nkx2-5 (FNmE) site mutants tested as indicated.
was unaffected by this deletion, synergism with Foxh1 gene (Figure 7). was significantly decreased (Figure 5G). The residual Nkx2-5-dependent activation of the FNE and synergism... binding activity mediated by the homeodomain. In contrast, deletion of the homeodomain abolished both... the prospective AHF, as well as in the splanchnic mesoderm cells that lie medial to the cardiac crescent... of the FNE yielded no product, confirming specific Foxh1 binding to the sheared FNE fragment (data not shown). To determine if Foxh1 and Nkx2-5 co-occupy the FNE, we next employed a two-step DNA immunoprecipitation procedure (Benchabane and Wrana, 2003). For this, protein-DNA complexes in... co-occupy the Mef2c FNE. Co-occupation of the FNE suggested the possibility that Foxh1 and Nkx2-5 physically associate. To investigate this, we tested Foxh1 immunoprecipitates for the presence of Nkx2-5 and observed that Nkx2-5 coprecipitated with Foxh1 (Figure 5D). Bacterially expressed Nkx2-5 also interacted with Foxh1, indicating the interaction is direct. Mutation of the Foxh1 forkhead domain (FKHDm) abrogated this interaction, whereas the Smad binding domain mutants (SIMm and ΔS1D) had no effect (Figure 5E). We next examined Nkx2-5 mutants and observed reduced binding upon removal of the first 136 amino acids of Nkx2-5 and undetectable association upon deletion of the homeodomain (∆NHD and ∆HD). The homeodomain alone was also able to bind Foxh1 to some degree (Figure 5F). Therefore, the amino-terminal homeodomain region of Nkx2-5 is important for efficient binding to Foxh1. To determine if the physical interaction between Nkx2-5 and Foxh1 is important for activation of the FNE, we focused on Nkx2-5 (∆N) which decreased Foxh1 binding but does not interfere with Nkx2-5 DNA binding activity (data not shown). While the increase in FNE activity induced by expressing Nkx2-5 on its own was unaffected by this deletion, synergism with Foxh1 was significantly decreased (Figure 5G). The residual co-operativity likely reflects retention of some Foxh1 binding activity mediated by the homeodomain. In contrast, deletion of the homeodomain abolished both Nkx2-5-dependent activation of the FNE and synergism with Foxh1, consistent with the notion that the homeodomain of Nkx2-5 is also critical for the interaction, as demonstrated in vitro (Figure 5G). Collectively, these data indicate that Foxh1 and Nkx2-5 physically interact and cooperate to mediate synergistic TGFβ- and Smad-responsive element in the Mef2c gene.

The FNE Directs Transgene Expression in the AHF and RV-OFT
To determine if the FNE is active in vivo, we generated two transgenes in which either wild-type Fi3A or the nonresponsive Foxh1 mutant, Fi3A-F2m, were linked to the hsp68 promoter to drive expression of lacZ. After generating stable transfectants in ES cells, we first characterized transgene activity in vitro using ES cells differentiated into EBs (see Supplemental Figure S2D for further details). After plating EBs on gelatin-coated dishes, beating foci were marked and the cells then processed to detect lacZ activity. In ES cells harboring the wild-type Fi3A-hsp68LacZpA transgene (clone S1-2), 100% of beating foci stained for lacZ with minimal staining observed in nonbeating cells (Figure 6A). We also analyzed a second ES line harboring the wild-type Fi3A-hsp68LacZpA transgene (clone S1-6) and observed similar expression in beating foci (data not shown). In contrast, none of the ES cell lines with the Fi3A-F2m-hsp68LacZpA mutant transgene displayed detectable lacZ expression (Figure 6A and data not shown). Next, we analyzed these lines using tetraploid aggregation, which leads to 100% contribution of ES cells to the embryo (Nagy et al., 2003). Analysis of tetraploids derived from clone S1-2, which harbors the wild-type Fi3A-hsp68LacZpA transgene, revealed staining in the developing myocardium that extended anterior and dorsal to the developing heart tube at E8.25 (Figure 6B), similar to expression of the AHF markers, Fgf8 and Fgf10 (Figures 3A and 6B). At E9.0, transgene expression was observed in the RV and OFT in the same domain as Mef2c and Fgf10 (Figures 6C and 6D) and in the right sinus venosus (RSV) where Mef2c is also strongly expressed. Analysis of sections derived from these embryos further revealed transgene expression in a population of pharyngeal and splanchnic mesoderm cells that corresponds to the prospective AHF, as well as in the myocardial layer of the RV, OFT, and RSV (Figure 6D). For this transgenic line, we also observed ectopic staining in the vasculature. In contrast, there was no detectable staining in tetraploids derived from ES cells harboring the Foxh1 mutant element (Figure 6C). We also examined tetraploid embryos derived from our second Fi3A-WT ES line (S1-6), which also displayed staining in beating foci. Although overall staining was weaker in tetraploid embryos derived from this line, similar staining in the AHF and its derivatives was observed (data not shown). These results point to a key role for Foxh1 in specifying the AHF during cardiac morphogenesis in part by synergistically interacting with Nkx2-5 to regulate a TGFβ- and Smad-responsive element in the Mef2c gene (Figure 7).

Discussion

Foxh1 Is Required for Formation of the AHF
Cell marking studies and the analysis of a gene trap in the mouse Fgf10 gene have shown that the major contribution of cardiogenic cells to the arterial pole of the heart occurs from the newly described AHF (Kelly and Buckingham, 2002). The AHF arises from splanchnic mesodermal cells that lie medial to the cardiac crescent and which later extend dorsally and anteriorly to the arterial pole of the developing heart. In addition, cells from the pharyngeal mesoderm contribute via the splanchnic mesoderm to expansion of the arterial pole to give rise to the RV and OFT (Kelly and Buckingham, 2002). This population of splanchnic mesoderm makes
Figure 5. Physical and Functional Interactions between Foxh1 and Nkx2-5 on the FNE
(A) Both Nkx2-5 and Foxh1 occupy the FNE. COS1 cells were transfected with cDNA encoding either T7-tagged Nkx2-5 or Flag-tagged Foxh1 along with the pGL3-FNE reporter construct. Protein-DNA complexes from transfected cells were immunoprecipitated with either anti-T7 (α-T7) antibody or anti-Flag (α-Flag). Total input DNA and DNA recovered from the immunoprecipitates were analyzed by PCR. Expression of Nkx2-5 and Foxh1 was confirmed by immunoblotting (IB) using α-T7 and α-Flag monoclonal antibodies, respectively.

(B) Foxh1 occupies the endogenous FNE. Embryoid bodies obtained from Foxh1+/− ES cells reconstituted with Flag-Foxh1 (PF13) or wild-type ES cells (R1) were subjected to in vitro differentiation and a ChIP assay performed using either α-Flag antibody to immunoprecipitate Flag-Foxh1 or a control antibody. After removal of the crosslinks, immunoprecipitated DNA was amplified by PCR using FNE-specific primers. Expression of Flag-Foxh1 was analyzed by immunoblotting (IB) total lysates (lower panel).

(C) Foxh1 and Nkx2-5 co-occupy the FNE. COS1 cells were transfected with T7-Nkx2-5 and/or Flag-Foxh1 together with pGL3-FNE. After formaldehyde crosslinking, lysates were subjected to immunoprecipitation with the indicated antibody (1st IP), eluted with 1% SDS and then re-immunoprecipitated with α-T7 or α-Flag antibody (2nd IP). Total input FNE and FNE present in immunoprecipitates was analyzed by PCR.

(D) Nkx2-5 and Foxh1 interact. Lysates obtained from COS1 cells expressing Flag-Foxh1 and T7-Nkx2-5 either alone or together were immunoprecipitated (IP) using α-Flag antibody. Immunoprecipitates were separated by SDS-PAGE and immunoblotted (IB) using α-T7. The expression of Foxh1 and Nkx2-5 was confirmed by immunoblotting (IB) using α-Flag and α-T7, respectively.

(E) Foxh1 interacts with Nkx2-5 through its forkhead domain. To map the region of Foxh1 required for binding to Nkx2-5, lysates from cells expressing Flag-tagged wild-type Foxh1 (F-Foxh1), the Smad-interacting motif mutant Foxh1 (F-SIMm), the DNA binding motif mutant Foxh1

(F) Co-occurrence of Foxh1 and Nkx2-5 on the FNE.

(G) Relative activity.
Foxh1 Is Required for Formation of the AHF

Figure 6. Expression of the Foxh1-Dependent MeF2c Intron Enhancer F3A
(A) Either wild-type F3A (WT) or F3A with the second Foxh1 site mutated (F2m) was coupled to hsp68LacZpA and stable transgenic ES cell lines isolated. Representative clones harboring either the WT (S1-2) or F2m mutant (S5-2) of F3A were subjected to in vitro differentiation and beating foci marked in each clone (red arrowheads) prior to fixation and staining for lacZ expression (blue).

(B and C) Analysis of F3A-hsp68LacZpA transgene expression in tetraploid embryos. Embryos derived entirely from either the S1-2 or S1-5 ES cells, harboring wild-type (F3A) or mutant (F3A-F2m) F3A-hsp68LacZpA transgene, respectively, were generated by tetraploid aggregation with B5/EGFP ICR morulae. Tetraploid embryos at E8.25 (B) or E9.0 (C) were stained for lacZ expression and are shown side-by-side with whole-mount in situ analysis of expression of Fgf8 (B) or Fgf10 and MeF2c (C). In the heart region, the F3A-hsp68LacZpA transgene displays an expression pattern similar to that of Fgf8 at E8.25 and at late looping stage is strongly expressed in the RV-OFT, similar to Fgf10 and MeF2c, as well as in the RSV where MeF2c is also expressed. Note that F3A-F2m-hsp68LacZpA (C) displays no lacZ expression.

(D) Transverse section of a F3A-hsp68LacZpA tetraploid embryo. At the level of the RV-LV-RSV (left panel), lacZ activity is in the myocardium of the RV and RSV, with little expression in the LV and atria, as well as in a contiguous group of pharyngeal and splanchnic mesodermal cells (arrowheads). At the level of the OFT (right panel), expression in the heart is strong throughout the OFT myocardium and in the pharyngeal mesoderm (black arrowheads).

Abbreviations: a, atrium; lv, left ventricle; oft, outflow tract; ph, pharynx; rsv, right sinus venous; rv, right ventricle; nt, neural tube.

extensive contributions throughout the developing heart, including the atria, and is initially specified by Isl1 (Cai et al., 2003). However, Foxh1 mutant hearts have severe abnormalities in OFT-RV, but have well-developed atria and a primitive left ventricle, suggesting that there are not general defects throughout the Isl1-positive splanchnic mesoderm. In support of this, Isl1 was expressed normally in Foxh1 mutants, as were BMPs, which are dependent on Isl1 (data not shown) (Cai et al., 2003). In contrast, Fgf8 and Fgf10, which are also

(F-FKHDm), and a truncation mutant of Foxh1 that is missing the carboxy-terminal region downstream of the forkhead domain (F-ΔSID) were divided and incubated with either GST or GST-Nkx2-5 protein produced in bacteria and immobilized on glutathione-sepharose beads. After washing, Foxh1 bound to the beads was analyzed by immunoblotting (IB) using α-Flag antibody. Total GST or GST-Nkx2-5 was analyzed by staining with Ponceau S and expression of Foxh1 and its mutants confirmed by immunoblotting aliquots of total cell lysates.

(F) Nkx2-5 interacts with Foxh1 through its homeodomain. The indicated mutants of Nkx2-5 fused to GST were expressed in bacteria and purified on glutathione sepharose beads, prior to incubating with lysates obtained from F-Foxh1-expressing cells. Foxh1 bound to the beads was analyzed by immunoblotting (IB) using α-Flag. Equivalent levels of GST-Nkx2-5 fusion proteins were confirmed by performing Ponceau S staining of the blot prior to immunoblotting. Abbreviations: HD, homeodomain; N, amino-terminal 136 amino acids.

(G) Activation of FNE by Nkx2-5 mutants. HepG2 cells were transiently transfected with the FNE-lac reporter construct together with the indicated Foxh1 and Nkx2-5 expression constructs. Luciferase activity in lysates from cells incubated in the absence (open bars) or presence of 200 pM TGFβ (closed bars) was determined and normalized to β-galactosidase activity, and is expressed as the mean ± SD of triplicates from a representative experiment.
expressed throughout this field in an Isl1-dependent manner, were strongly decreased but only in the anterior region. These results suggest a model in which Foxh1 functions downstream of Isl1 to specifically regulate formation of the dorsoanterior region of the AHF. We also noted that Foxh1−/− mutants failed to pattern the outer curvature of the heart in the presumptive LV that is normally marked by expression of Smpx and Nppa (Christoffels et al., 2000). The LV expression domain of Nppa is dependent on Tbx5, and expression of Tbx5 was also depressed in the LV of mutant hearts, although not in the developing atria. Other markers of the LV and most ventricular region markers were present, suggesting that while a rudimentary LV is formed in Foxh1−/− mutants it is not fully differentiated. In contrast, we observed no significant defects in the inflow tract of Foxh1−/− mutant hearts. Thus, Foxh1 is required for differentiation of the outer curvature of the developing LV and formation of the AHF.

Transcription Factor Networks in the AHF

Foxh1−/− mutant hearts have defects that closely resemble the RV and OFT defects observed in Mef2c−/− mutants (Lin et al., 1997) and Mef2c is not expressed in the RV-OFT of Foxh1−/− mutant hearts, although its expression in the inflow tract is retained. Mef2c is directly regulated by Foxh1, which physically and functionally cooperates with Nkx2-5 to mediate a strong TGFβ-dependent signal on a specific element in the Mef2c gene we termed the FNE. Furthermore, an intronic fragment of Mef2c containing the FNE drives transgene expression in the AHF and its derivatives, the RV and OFT, where Mef2c is strongly expressed. Regulation of Mef2c is likely to be complex, involving both initiator and maintenance elements. Thus, the FNE may not be the only element required for accurate regional expression. Indeed, expression in skeletal muscles utilizes distinct elements that control initiation and maintenance of Mef2c via myogenic bHLH factors (Wang et al., 2001). However, the FNE is likely a key element for Foxh1-dependent regulation of Mef2c in the RV and OFT derivatives of the AHF. This is consistent with recent speculation that defects in the hearts of Mef2c−/− mutants may reflect abnormalities in deployment of the AHF (Kelly and Buckingham, 2002). Mef2c is unlikely to be the sole target of Foxh1 in the AHF, and multiple target genes are probably involved. Pitx2 for example, is a known target of Foxh1 and is also regulated by Nkx2-5. Pitx2 is expressed within the branchial arch and splanchnic mesoderm that form the secondary or anterior heart field and has been shown to function there to control patterning of the OFT (Liu et al., 2002). The defects in Pitx2 mutants are less severe than the Foxh1 and Mef2c mutants and thus would be obscured in our mutant hearts. Nevertheless, these data suggest that Foxh1 regulates a broad transcriptional program that includes Mef2c and Pitx2 and that these targets fulfill distinct functional roles in the AHF during heart morphogenesis.

Foxh1 has previously been suggested to be sufficient on its own to mediate strong induction of a number of target elements both in vitro and in vivo (Attisano et al., 2001), so at the molecular level it is unclear why the TGFβ-responsive element in the Mef2c gene is poorly regulated by Foxh1 alone. Nevertheless, we propose that the requirement for Nkx2-5 confers heart-specific regulation on Foxh1 targets. Interestingly, mutation of the Foxh1 or Nkx2-5 binding element or mutation of the DNA binding activity of Foxh1 or Nkx2-5 severely compromises activity on the Mef2c TGFβ-responsive element in vitro. Furthermore, analysis of an N-terminal truncation mutant of Nkx2-5, which reduces the physical interaction between Foxh1 and Nkx2-5, but not Nkx2-5 DNA binding, caused a concomitant decrease in synergistic activation. Thus Foxh1 and Nkx2-5 need to physically interact with each other and DNA in order to fully activate the TGFβ-responsive element in the Mef2c gene.

Physical interactions between forkhead domain proteins and homeodomain proteins were recently reported for Foxa2 with Otx2, Engrailed, Lim1, Gsc, and Hoxa5 (Foucher et al., 2003; Nakano et al., 2000) as well as between Foxd3 and Oct-4 (Guo et al., 2002). These studies showed that Foxa2 antagonized Otx2- and Engrailed-mediated activation of gene transcription (Foucher et al., 2003; Nakano et al., 2000) and that Oct4 negatively regulated Foxd3-dependent transcription (Guo et al., 2002). This contrasts the synergistic activation of Nkx2-5 and Foxh1 noted in our studies. Thus, physical interactions between forkhead and homeodomain proteins can both positively and negatively regulate downstream target genes.

Combinatorial interactions between transcription factors are a common theme in heart development (Brand, 2003; Cripps and Olson, 2002). In particular, Nkx2-5 can directly interact with Tbx5, Tbx2, Tbx20, Gata4, and Hand2 to regulate cardiac genes, in particular Nppa, which has an Nkx2-5-Tbx5 response element in its promoter (Bruneau et al., 2001; Brand, 2003; Cripps and Olson, 2002; Stennard et al., 2003; Thattaliyath et al., 2002). Consistent with these observations, in both Hand2 and Tbx5 mutant embryos, Nppa expression in the ventricles is disrupted. Since Nkx2-5 expression was normal in Foxh1−/− mutants, the absence of Nppa expression in the mutant hearts likely reflects the loss of Tbx5 and Hand2 expression in the LV and RV, respectively (Figure 7). Consistent with this, we did not observe significant loss of Actc1 expression, which can be regulated by Nkx2-5 and Gata factors. We also observed that Smpx, which displays an expression pattern similar to that of Nppa, was dependent on Foxh1. Thus, it will be of interest to see whether Smpx is also regulated by combinatorial interactions between Hand2, Tbx5, and Nkx2-5.

Signals Regulating Foxh1 in the AHF

Little is known of the regulatory signals that control induction and specification of the AHF. However, Foxh1 functions as a specific Smad2-Smad3 nuclear target (Labbe et al., 1998) making the Foxh1-Nkx2-5 composite FNE in the Mef2c gene dependent on an extracellular TGFβ-like signal. Accordingly, mutation of the Smad2/3 binding site on Foxh1 prevented activation of the Foxh1-Nkx2-5 response element, and when we analyzed Foxh1−/− ES cells reconstituted with the Smad binding site mutant of Foxh1, there was minimal rescue of beating foci in EB assays (I.v.B. and J.L.W., unpublished data). There are several candidate TGFβ-like factors that show temporal and spatial overlap in expression with
mutations in *schmalspur*, which encodes the Foxh1 ortholog, do not lead to heart defects, despite having defects in the gastrula organizer and formation of axial midline structures (Whitman, 2001) that are analogous to the midline defects found in the Foxh1−/− mutant mouse (Hoodless et al., 2001; Yamamoto et al., 2001). Thus it is tempting to speculate that the absence of heart defects in Foxh1 mutant zebrafish reflects the absence of an AHF in fish, which have a single ventricle and no right-sided circulation. Foxh1 may have been co-opted during evolution to mediate formation of the AHF, which is needed for elaboration of the right-sided, pulmonary circulation.

Experimental Procedures

Whole Mount RNA In Situ Hybridization, Real-Time PCR Analysis, and OPT

RNA in situ hybridizations of whole embryos were performed according to www.hhmi.ucla.edu/derobertis/ and digitally imaged on a Coolsnap. Murine probes were generous gifts, or, in the case of Foxh1, GATA6, Isl1, or Mef2c were generated in-house based on previously published work. For analysis of Mef2b and Mef2c mRNA levels, quantitative PCR was employed as described (Rebbapragada et al., 2003) using oligo (dT)$_5$ primed RNA and intron-spanning primers as follows: Mef2b, forward 5′-AAGGTGTGGAGGA GAAGCGTCT-3′, reverse 5′-CTGAAACCCAGATCGTGAGAG-3′, which detect all Mef2b transcripts and Mef2c 'ex2..4', forward 5′-CTTCGTTCC-3′, and reverse 5′-GAAAACTGTGAAGTAACCTCTGG-3′, which detect only heart-specific Mef2c transcripts.

For OPT, embryos were subjected to fluorescent whole mount in situ using a mixture of digoxigenin-labeled Mybpc3 and Actc and Rhodamine tyramide amplification (Perkin-Elmer). Embryos were imaged using an OPT device as described (Sharpe et al., 2002), data visualized using Amira software (V.3.0, TGS Inc.), and segmentation performed automatically or, when necessary, manually.

Cloning, Transcription, and Biochemical Assays

Mouse Mef2c enhancer fragments were PCR amplified from R1 ES cell genomic DNA and subcloned into a modified (Labbe et al., 1998) pGL3-promoter vector (Promega). The first nucleotide and length of the enhancer fragments isolated from introns (i) 3, 7, and 9 of the mouse Mef2c gene (Wang et al., 2001) are: Fi3A (337 bp), Fi7 (64784 bp), Fi9 (126815 bp), and Fi11 (1149 bp). Mutant versions of Foxh1 used in these studies were TGTGTATT→TTTATATT and Nkx2-5 GCAAGTG→GAAGCA.

Luciferase assays in HepG2 cells were performed as previously described (Labbe et al., 1998).

ES Cell Culture and In Vitro Differentiation Assays

The Foxh1−/− knock-out cell line #3 (FKO3) was previously described (Hoodless et al., 2001). Foxh1-rescued FKO3 cell lines were generated by electroporating the episomal expression vector pCAGIP containing Flag-tagged Foxh1 and expression of Flag-Foxh1 protein...
in individual clones confirmed by immunoblotting. For in vitro differ-
entiation, ES cells (Boehler et al., 2002) were passaged twice on gelatin-coated plates in DMEM (Nagy et al., 2003), then grown
about 70% confluence. Cells were then suspended using 25 units
per ml cold dispase (BD Biosciences Discovery Labware), diluted
into EB medium (DMEM w/o LIF), and distributed into a 24-well
ultra-low-attachment plate (COSTAR). Medium was changed during
the next 2 days, and 5 days later EBs were transferred at low density
onto gelatin-coated 12-well tissue culture plates. The number of
attached EBs in each well were counted at day 7 and beating foci
counted 14 days after initiation of in vitro differentiation.

To generate F3A-hsp68LacZpA transgenic ES cells, the Mef2c
intron fragment F3A and the Foxh1 binding site mutant F3A-F2m
were subcloned into pKS-hsp68LacZpA modified to contain a puromy-
cin resistance cassette. Clones generated by stable transfection
in individual clones confirmed by immunoblotting. For in vitro differ-
 proliferates prior to differentiation and contributes a majority of cells
to the heart. Dev. Cell 5, 677–689.

Christoffels, V.M., Habets, P.E., Franco, D., Campione, M., de Jong,
F., Lammers, W.H., Bao, Z.Z., Palmer, S., Biben, C., Harvey, R.P.,
and Moorman, A.F. (2000). Chamber formation and morphogenesis in
the developing mammalian heart. Dev. Biol. 223, 266–278.

Cripps, R.M., and Olson, E.N. (2002). Control of cardiac development
by an evolutionarily conserved transcriptional network. Dev. Biol.
246, 14–28.

transcription factor HNF3beta is required in visceral endoderm
for normal primitive streak morphogenesis. Development 125, 3015–
3025.

Foucher, I., Montesinos, M.L., Volovitch, M., Prochiantz, A., and
Trembleau, A. (2003). Joint regulation of the MAP1B promoter
by HNF3beta/Foxa2 and Engrailed is the result of a highly conserved
mechanism for direct interaction of homeoproteins and Fox tran-

Homoedomain and winged-helix transcription factors recruit activated
Smads to distinct promoter elements via a common Smad interac-

Guo, Y., Costa, R., Ramsey, H., Starnes, T., Vance, G., Robertson,
embryonic stem cell transcription factors Oct-4 and FoxD3 interact

Harvey, R.P. (2002a). Molecular determinants of cardiac develop-
ment and congenital disease. In Mouse Development: Patterning,
Morphogenesis, and Organogenesis, J. Rossant and P.P.L. Tam,

Genet. 3, 544–556.

Hoodless, P.A., Pye, M., Chauda, C., Labbe, E., Attisano, L., Ros-
sant, J., and Wira, J.L., (2001). FoxH1 (Fast) functions to specify the

field: voyage to the arterial pole of the heart. Trends Genet. 18, 210–216.

pole of the mouse heart forms from Fgf10-expressing cells in pha-

Labbe, E., Silvestri, C., Hoodless, P.A., Wanra, J.L., and Attisano,
L. (1998). Smad2 and Smad3 positively and negatively regulate
TFGβ-dependent transcription through the forkhead DNA-binding

Lin, Q., Schwarz, J., Buccana, C., and Olson, E.N. (1997). Control of
mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C.
Science 276, 1404–1407.

(2002). Ptk2c patterns anterior myocardium and aortic arch vessels
and is required for local cell movement into atroventricular cusion-

Mjaatvedt, C.H., Nakaoaka, T., Moreno-Rodriguez, R., Norris, R.A.,
The outflow tract of the heart is recruited from a novel heart-forming

Molin, D.G., Bartram, U., Van der Heiden, K., Van Iperen, L., Speer,
C.P., Hierck, B.P., Poelmann, R.E., and Gittenberger-de Groot, A.C.
(2003). Expression patterns of Tgfβ1–3 associate with myocardial
alisation of the outflow tract and the development of the epicardium

Manipulating the Mouse Embryo: A Laboratory Manual, 3rd edn
(New York: CSHL Press).

Commun. 267, 64–70.